

Budapest University of Technology and Economics

Federation of European Heating, Ventilation and Air-conditioning Associations

Zoltan MAGYAR, PhD, Member

Vice-president, REHVA, Belgium
Head of HVAC Department
Budapest University of
Technology and Economics
Budapest, Hungary
magyar@egt.bme.hu
zmagyar@invitel.hu

Practical Benchmarking of HVAC Systems Energy Efficiency in Use

Seminar - European Union: Practical Benchmarking of HVAC System Energy Efficiency

2014 Winter Conference, NY, NY

Acknowledgements

iSERV

Inspection of HVAC systems through continuous monitoring and benchmarking

www.iservcmb.info

Co-ordinator: Prof. Ian Knight
Cardiff University, UK

2012 - 2014

Outline/Agenda

Long-term energy savings in buildings

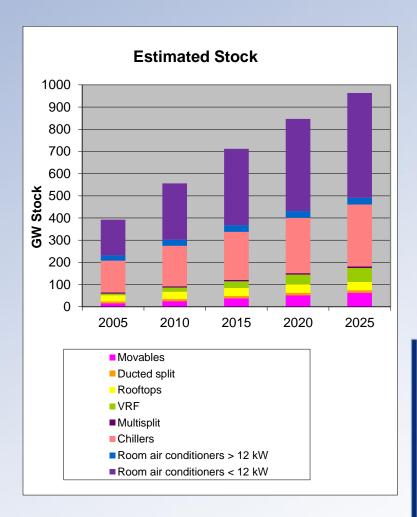
iSERV process

Potential savings, results

Why is Europe interested in the energy use of HVAC systems?

Equipment	Electrical consumption as % of total EU 2007 Elec use		
Air conditioning units and chillers	0.75		
Fans in ventilation systems	3.34		
Pumps / circulators	1.81		
Space and Hot Water Heating	5.23		
TOTAL	11.13%		
FC Joint Research Centre Institute for Energy 2009			

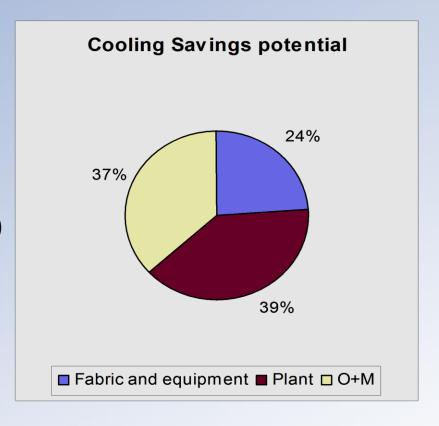
EC Joint Research Centre, Institute for Energy, 2009


At this level of energy consumption, HVAC systems must be a key contributor towards energy savings being sought in the EU

Context: European A/C Market

- European ownership of air conditioning is increasing
- This trend is expected to continue as Europe is currently well below US levels of ownership for similar climates

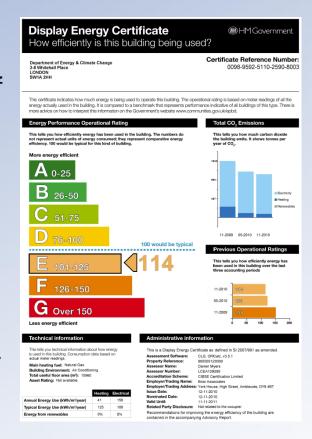
Reference: Roger Hitchin, Christine Pout, Philippe Riviere "Assessing the market for air conditioning systems in European buildings", Energy and Buildings, Volume 58, March 2013.



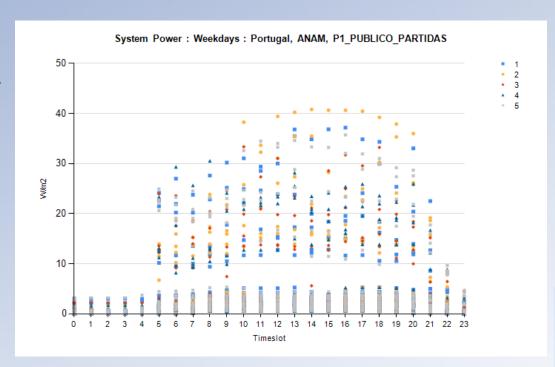
Context: Potential Energy Saving

Potential for savings through:

- Load reduction (24%)
- Improved efficiency (39%)
- Better operation (37%)


Source: HarmonAC project results. http://www.harmonac.info/

A 20th Century approach to a 21st Century problem


- Most EU MS Legislation aimed at reducing energy use looks at whole buildings and annual energy use due to the availability of billing meters for most buildings.
- So we know WHAT we are using, but not WHY we are using it.
- Current processes do not show what is possible to achieve with our actual existing building and activity mixes.
- Most organisations JUST comply with legislation, i.e. they spend time and money on compliance exercises but not improving their energy use in a robust manner.

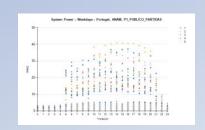
A 21st Century approach to a 21st Century problem

- New data sources now allow us detailed insights into how energy is used at sub-hourly intervals and by end uses.
- This level of detail is sufficient to provide confidence in what needs to be done to reduce energy use.

 iSERV utilises these new data sources to show how such a new approach might work - from defining the buildings through to how it might work with legislation.

iSERV

- A way to show owners of real buildings the energy savings possible FOR THEIR BUILDINGS, by comparing their use with the performanceof other real buildings using the same equipment to service the same activity and floor area.
- iSERV uses an empirical process based on physical items that can be measured and found in all buildings.
- This means that reports can refer to actual items in a building.
- Gives confidence to the owner/operator that the information is relevant to them.
- Reduces RISK therefore enables INVESTMENT.

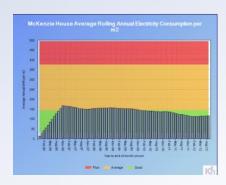


The iSERV recipe

A Spreadsheet

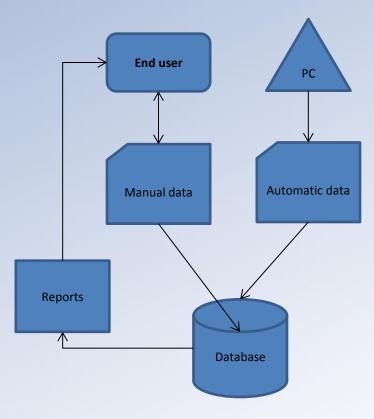
Sub-hourly data

+ A database

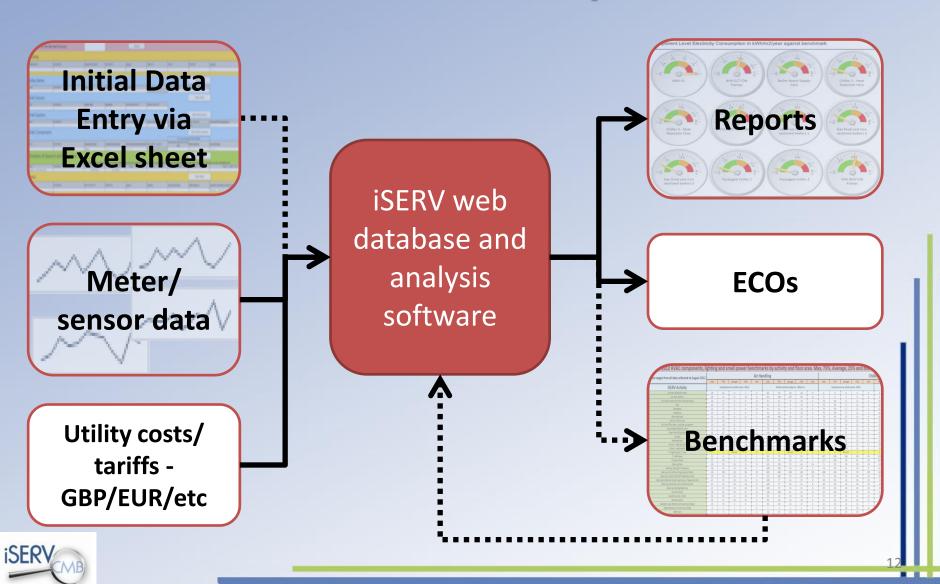

+ Component benchmarks

Targeted reports

Energy savings



What iSERVcmb is doing


Remotely monitoring HVAC systems across Europe

- Target 1600 HVAC systems of all types in EU countries.
- Range of building sectors.
- Sub-hourly data for individual HVAC components.
- Mostly using existing or easyto-add monitoring.
- Collating and analysing all data in a web-based database.

Overview of basic process

Collect information on the building

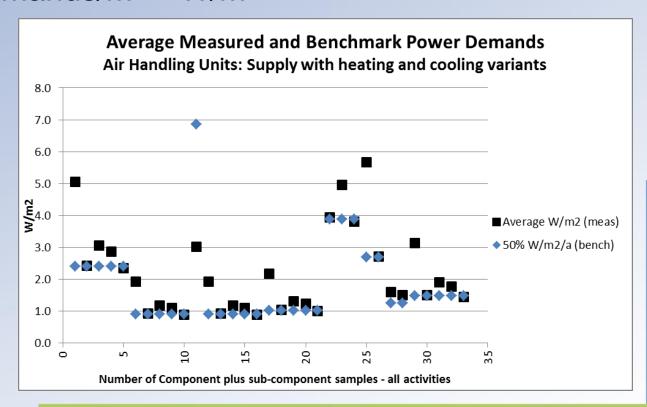
- Floor area and activity for each space in the building
- Networked utility meters and sensors, and where they serve
- Unique Identifiers for the sub-hourly data to be collected from these meters and sensors
- All HVAC Components and where they serve

Collate information on the building

- iSERV has set up a spreadsheet to act as a data collection focus for the building, meters and services physical elements
- The spreadsheet also acts as a means of connecting all the elements together

Database

- A bespoke database has been written for the project
- Based on a commercial product
- Acts as the focus for the iSERV project elements:
 - Data collection
 - Benchmark use
 - Benchmark generation
 - Reports
 - EnergyConservationOpportunityalgorithms

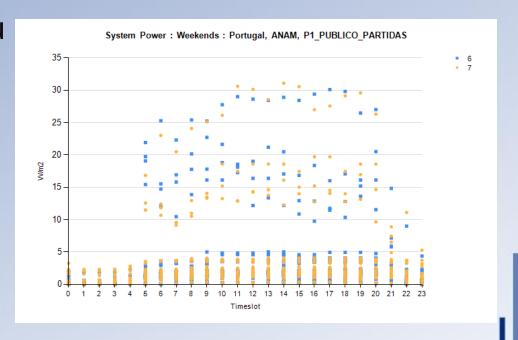


Benchmarks

Three types of benchmark being produced and explored:

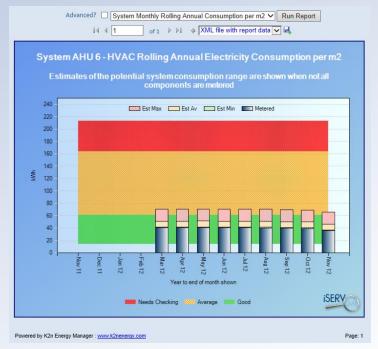
- Annual energy/m² kWh/m².a
- Monthly energy/m² kWh/m².month
- Power demands/m² W/m²

Three ways to save energy – regularly show performance


- Regularly show
 performance against
 benchmarks derived from
 the spreadsheet
 description of the building
 and services
- Benchmarks will evolve over time as the buildings / components providing data change their performance – so benchmarks always reflect current practice

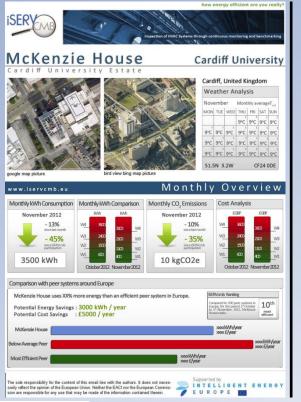
Three ways to save energy – better control of existing plant

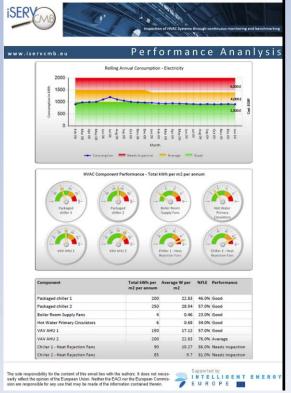
Better control of what you already have e.g. use of ECO algorithms or scatter graphs/carpet plots to identify when systems and components are running outside of expected hours

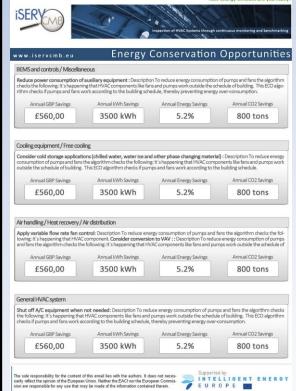

- Clearly shows what could be controlled better
- Can use the data directly to calculate potential savings

Three ways to save energy – install more efficient equipment

- equipment. Even if equipment is well controlled it may well require more power when in use than more modern equipment
- Benchmarks based on power demands when in use can help show this difference and when equipment might benefit from being upgraded

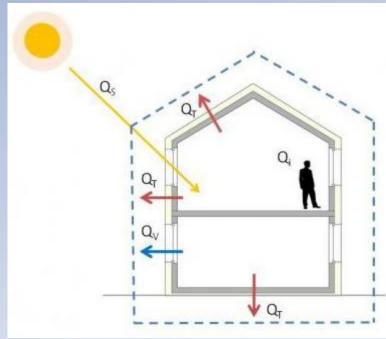






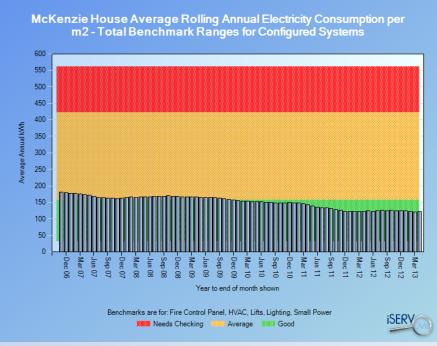
Reports

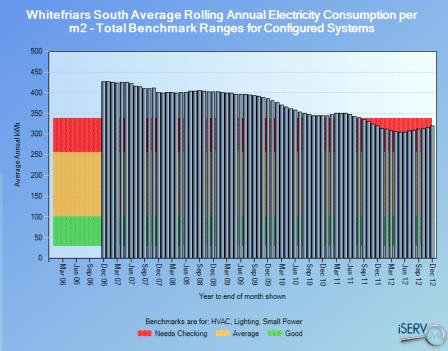
- The key is to not just present meter data but to interpret it with respect to the situation in the real building
- A number of report sets are being trialled to see which provide the information in the best form to allow



The near future

- Near zero energy buildings will require us to BALANCE the energy loads in a building with minimum NET use of energy
- With highly insulated structures this balance is mainly about how Solar Gains, Internal Gains and Ventilation energy needs interact with each other




- The most controllable parameter is Ventilation
- In both hot and cold climates energy efficiency can be achieved by MINIMISING ventilation rates, with the attendant potential for IAQ problems and Health

Savings in real buildings

Two buildings showing their electrical savings achieved since first participating in HARMONAC

Monitoring savings: 3 Case Studies

- Building electrical savings of between 19% to 33% p.a.
- Building electrical savings/m² between 61 to 100 kWh/m²/a
- In economic terms:
 - Measured recurrent savings of 9 to 14 EUR/m²/a
 - Recorded 'one-off' setup costs between 0.1 to 2 EUR/m²
 - Estimated 0.1 3 EUR/m²/a to maintain.
 - Net returns between 7 13 EUR/m²/a
- The savings actually achieved in these 3 buildings indicate more significant ACTUAL savings could be achieved in the wider building stock.
- Success in reducing HVAC energy use is providing the confidence and finance (from savings) to tackle other electrical use as well

Cost comparison of 3 acceptable recast EPBD approaches

Topic	Inspection	Monitoring	Advice
Cost	100 – 250 EUR (Compliance) 0.5 – 2.5 EUR/m ² (EPBD)	0.1 to 2.0 EUR/m ² setup 0.1 to 3.0 EUR/m ² ongoing	Not known
Savings	Estimate (HARMONAC): 2.0 to 3.2 EUR/m² at best	Measured (small sample): 9.0 – 14.0 EUR/m²/a (electrical) Up to 33% building elec use	Not known
Net savings	-100 to -250 EUR or -0.5 to 2.7 EUR/m ²	1.0 to 13.0 EUR/m ² /a	Not known
Impact assessment	No feedback route	Data allows precise 'before' and 'after' impact studies	No feedback route
Comments	Savings not likely to be sustainable where intervention is needed. Savings difficult to maintain.	Initial setup can be costly. Requires more attention than inspection or advice. Provides detailed understanding of energy use. Reduces investment risk. Proven real energy savings. Helps maintain savings Provides data for design decisions	Difficult to show impact. No mechanism for drawing attention to energy use. Not clear how it will help maintain energy savings.

Proposal on implementing monitoring as a complement to Inspection

- iSERV proposes Monitoring and Inspection are complementary processes as DETAILED Inspections are the obvious route to improving buildings with poor benchmarks.
- Monitoring requires the iSERV spreadsheet be completed first. (Whether or not a Monitoring scheme exists this step should be required by legislation as it informs both Inspection and Advice).
- Second step is the accreditation of monitoring schemes. These schemes required to report key data to MS legislators.
- Set regular benchmarks from the data to ensure benchmarks continue to reflect best practice being achieved.

Monitoring - Conclusions

- Monitoring brings:
 - Clarity and Certainty;
 - Proven energy and cost savings to the end user and MS;
 - End user engagement and ability to contribute to 2020 targets;
 - Proof of impact achieved;
 - Increased use of energy efficient products;
 - Reduced Risk;
 - Ability to use Smart Metering data which is coming
- As a commercial prospect monitoring makes sense already.

Questions?

Zoltan MAGYAR
Professor, ASHRAE Member
zmaggar@invitel.hu
maggar@egt.bme.hu

